

Diagnostic Approach to Childhood Anemia

Department of Pediatrics

Olga CÎRSTEA, MD, PhD, Associate Professor

Definition of anemia

- From Greek meaning "without blood"
- Condition where capacity of blood to transport oxygen to tissues is reduced or a condition in which the number of red blood cells or their oxygen-carrying capacity is insufficient to meet physiologic needs.

- decreased hemoglobin, RBC count, and hematocrit

- Anemia is not a disease but a *manifestation* of disease
- Treatment depends on discovering underlying cause

Introduction

- Anemia is estimated to affect 1.6 billion people. The highest prevalence is found in preschool-age children (47.4%), followed by pregnant females (41.8%), non-pregnant females (30.2%), school-age children (25.4%), and males (12.7%).
- Anemia is rarely an isolated disease and is most often a sign of an acquired or inherited disorder.

World Health Organization. The Global Prevalence of Anaemia in 2011. Geneva: WHO, 2015; De Benoist B, 2008

Hematopoiesis

- Red cells are produced in the bone marrow from myeloid progenitor cells, where their production requires a permissive bone marrow micro-environment and adequate substrate (including iron, vitamin B12 and folate) for hemoglobin, protein and DNA synthesis.
- Erythropoiesis is controlled by erythropoietin, which is synthetized by peritubular fibroblasts in the renal cortex in response to reduced oxygen tension.

Basic hematologic lab tests

- Complete blood count (CBC)
 - ✓ Amount of hemoglobin
 - ✓ Number, size, and shape of red blood cells (RBCs)
 - ✓ Number of white blood cells (WBCs) and platelets
 - ✓ +/- automated WBC differential
- Manual differential/manual peripheral smear review Abnormalities that fall outside of established parameters result in manual review

Complete blood count (CBC)

- Hemoglobin (g/dL) amount of oxygen carrying protein
- Hematocrit (%) % of blood volume occupied by RBCs
- RBC count (M/uL) number of RBCs
- MCV (fL) mean cell volume
- MCH (pg) mean cell hemoglobin
- MCHC (g/dL) mean cell hemoglobin concentration
- RDW (%) red cell distribution width
- WBC (K/uL) number of WBCs
- Platelet count (K/uL) number of platelets

Measuring RBC parameters

- Hemoglobin (Hb)
 - measured directly as absorbance of cyanomethemoglobin
- RBC count (RBC)
 - measured directly by impedance
- Hematocrit (Hct)
 - measured by centrifugation; ratio of volume of RBCs to volume
 - of whole blood
 - can also calculate (MCV x RBC)
- MCV
 - measured by mean height of voltage pulses in an impedance counter
 - can also calculate (Hct / RBC)
- MCH = Hb / RBC
- MCHC = Hb / Hct

	Hemoglobin (g per dL)		Hematocrit (%)		Mean corpuscular volume (fL)	
Age	Mean	2 SDs below mean	Mean	2 SDs below mean	Mean	2 SDs below mean
26 to 30 weeks' gestation	13.4	11.0	41.5	34.9	118.2	106.7
28 weeks' gestation	14.5	NA	45	NA	120	NA
32 weeks' gestation	15.0	NA	47	NA	118	NA
Full term (cord sample)	16.5	13.5	51	42	108	98
1 to 3 days	18.5	14.5	56	45	108	95
2 weeks	16.6	13.4	53	41	105	88
1 month	13.9	10.7	44	33	101	91
2 months	11.2	9.4	35	28	95	84
6 months	12.6	11.1	36	31	76	68
6 months to 2 years	12.0	10.5	36	33	78	70
2 to 6 years	12.5	11.5	37	34	81	75
6 to 12 years	13. <mark>5</mark>	11.5	40	35	86	77
12 to 18 years (male)	14.5	13.0	43	36	88	78
12 to 18 years (female)	14.0	12.0	41	37	90	78

Evaluation of the size of RBCs

- MCV (Mean Cell Volume)
 - ✓ Microcytic < 80 fl (cubic micrometers or femtoliters (μ m³ = **fL**))
 - ✓ Normocytic 80-100 fl
 - ✓ Macrocytic > 100 fl

Fundamental questions to be considered

- What is the cause of the anemia?
- What is the urgency for correcting the anemia, i.e. is a blood transfusion or other urgent intervention indicated?

Cause	Etiology and epidemiology	Presentation	Indices and other laboratory testing
Neonatal ⁷			
Blood loss	Hemorrhage (placental abruption, subgaleal, traumatic); maternal- fetal and twin-twin transfusion Accounts for 5 to 10 percent of all cases of severe neonatal anemia	Tachypnea, pallor, and mental status change (irritability, poor feeding); >20 percent loss of blood volume results in shock and cardiopulmonary collapse	Anemia with normal indices; reticulocyte count is initially normal, then increases; positive Kleihauer- Betke test in maternal-fetal hemorrhage
Isoimmunization	ABO incompatibility, Rh incompatibility Rh incompatibility occurs in 10.6 per 10,000 live births; 50 percent of these infants develop anemia	Jaundice and mild anemia; infants with severe isoimmunization (e.g., untreated Rh incompatibility) may present with hydrops fetalis	Positive Coombs test; elevated bilirubin level; normocytic anemia with elevated reticulocyte count
Congenital hemolytic anemia	Spherocytosis, G6PD deficiency	Hyperbilirubinemia and moderate jaundice	Low enzyme activity; with hemolysis, smear may show poikilocytosis, reticulocytosis, Heinz bodies, and bite cells (in G6PD deficiency)

or spur cells (in pyruvate kinase deficiency)

Cause	Etiology and epidemiology	Presentation	Indices and other laboratory testing
Congenital infection	Parvovirus B19, human immunodeficiency virus, syphilis, rubella, sepsis	Pallor, irritability, and other findings associated with infection (e.g., deafness)	Normocytic anemia with low reticulocyte count
Diamond-Blackfan syndrome	Congenital pure red cell aplasia resulting from increased apoptosis in erythroid precursors Affects 7 per 1 million live births	Neonatal pallor progressing to symptomatic anemia; average age of diagnosis is 3 months; about 30 percent have other abnormalities	Macrocytic anemia with low reticulocyte count
Fanconi anemia	Increased susceptibility of progenitor cells in bone marrow leads to increased apoptosis, progressing to pancytopenia	Average age of diagnosis is 8 years, but associated congenital abnormalities may facilitate early diagnosis (e.g., café-au-lait spots; microsomy; low birth weight; thumb, renal, skeletal, and eye abnormalities)	Microcytic anemia and reticulocytopenia, thrombocytopenia, or leukopenia; DNA sequencing can detect genetic mutations for Fanconi anemia complementation groups

Cause	Etiology and epidemiology	Presentation	Indices and other laboratory testing	
Infancy to toddlerhoo	od ²			
Iron deficiency	Inadequate dietary intake, chronic occult blood loss (excessive cow's milk consumption, inflammatory bowel disease, Meckel diverticulum, parasites) Prevalence is 8 to 15 percent	Usually asymptomatic; severe cases can present with fatigue, pallor, or dyspnea; rarely occurs before 6 months of age; highest risk is at 6 to 36 months of age	Microcytic anemia with elevated RBC distribution width; peripheral smear shows hypochromic microcytes and may show target cells; iron and ferritin levels and iron saturation are low; transferrin level is elevated	
Concurrent infection	Bacterial or viral infection leading to cytokine-mediated decrease in iron utilization and RBC production	Presenting symptoms usually result from infectious process	Normocytic or mildly microcytic, low/ normal serum iron level with low transferrin level; ferritin level may be elevated because it is an acute phase reactant	
Blood loss	Trauma, gastrointestinal bleeding	Tachypnea, tachycardia, pallor, hypotension	Hgb levels may initially be normal, fol- lowed by anemia with normal indices	

Cause	Etiology and epidemiology	Presentation	Indices and other laboratory testing
Disorder of Hgb structure or synthesis	Thalassemia, sickle cell disease	Anemia in thalassemia may range from mild and asymptomatic to severe, depending on number of heme chains affected; sickle cell disease presents with hemolysis, pain crises, dactylitis, and aplastic crisis; symptoms are rarely present at birth but typically develop in the first year	Microcytic anemia, low RBC distribution width, and low Mentzer index in thalassemia; Hgb electrophoresis may show Hgb F; smear with basophilic stippling; hemolysis, reticulocytosis, and Hgb S on electrophoresis in sickle cell disease
RBC enzyme defects	G6PD deficiency, pyruvate kinase deficiency 10 percent of the black population has G6PD deficiency	Neonatal hyperbilirubinemia and hemolytic anemia when exposed to oxidative stress	Low enzyme activity; with hemolysis smear may show poikilocytosis, reticulocytosis, Heinz bodies, and bite cells (in G6PD deficiency) or spur cells (in pyruvate kinase deficiency)

Cause	Etiology and epidemiology	Presentation	Indices and other laboratory testing
RBC membrane defects	Spherocytosis, elliptocytosis	Hyperbilirubinemia, splenomegaly, gall bladder disease, and aplastic crisis; autosomal dominant, so family history is positive in about 75 percent of patients	Macrocytosis, reticulocytosis, elevated bilirubin and lactate dehydrogenase levels; spherocytes or elliptocytes on smear; osmotic fragility test is commonly done but not specific
Acquired hemolytic anemias	Antibody-mediated hemolysis, drug-induced hemolysis, hemolytic uremic syndrome, disseminated intravascular coagulation	Jaundice, fatigue, dyspnea	Positive Coombs test and spherocytes visible on smear in antibody- mediated hemolysis; schistocytes visible on smear in hemolytic uremic syndrome or disseminated intravascular coagulation
Transient erythro- blastopenia of childhood	Transient immune reaction against erythroid progenitor cells	Anemia after toxin ingestion or viral illness, usually in children 6 months to 3 years of age	Normocytic anemia, initially with reticulocyte count of 0; anemia resolves within 2 months
Leukemia, myelofibrosis	Usually spontaneous, but rates are increased in patients with prior radiation exposure or chemotherapy	Anemia causes pallor, fatigue, and dyspnea; patients with leukemia may present with petechiae, low-grade fever, nonspecific bone pain, gum swelling, or rash	Normocytic anemia with decreased reticulocyte count; leukopenia, leukocytosis, or thrombocytopenia; peripheral smear shows blast cells

Cause	Etiology and epidemiology	Presentation	Indices and other laboratory testing
Lead poisoning	Risk factors include young age, living in a home built before 1970 or in areas where soil is contaminated, and pica (as in iron deficiency)	In addition to anemia, patients may present with abdominal pain, altered mental status, renal disease, and hypertension	Microcytic anemia may be concurrent with iron deficiency; peripheral smear may show basophilic stippling; hemolysis may be present
Late childhood and a	dolescence ²		
Iron deficiency	Second peak in iron deficiency occurs in adolescence because of growth spurt, menstruation, and poor dietary iron intake	Pallor, fatigue, dyspnea	Same as for infants and toddlers, above
Chronic disease	Renal disease, liver disease, hypothyroidism, other chronic illnesses	Usually mild and asymptomatic	Normocytic or mildly microcytic, low/ normal serum iron level with low transferrin level; ferritin level may be elevated because it is an acute phase reactant

tame as for infants and toddlars, above		
Menstruation in adolescent girls	/e	
Same as for infants and toddlers, abov	/e	
Same as for infants and toddlers, abov	/e	
Same as for infants and toddlers, abov	/e	
	Menstruation in adolescent girls Same as for infants and toddlers, above Same as for infants and toddlers, above	Same as for infants and toddlers, above Menstruation in adolescent girls Same as for infants and toddlers, above Same as for infants and toddlers, above

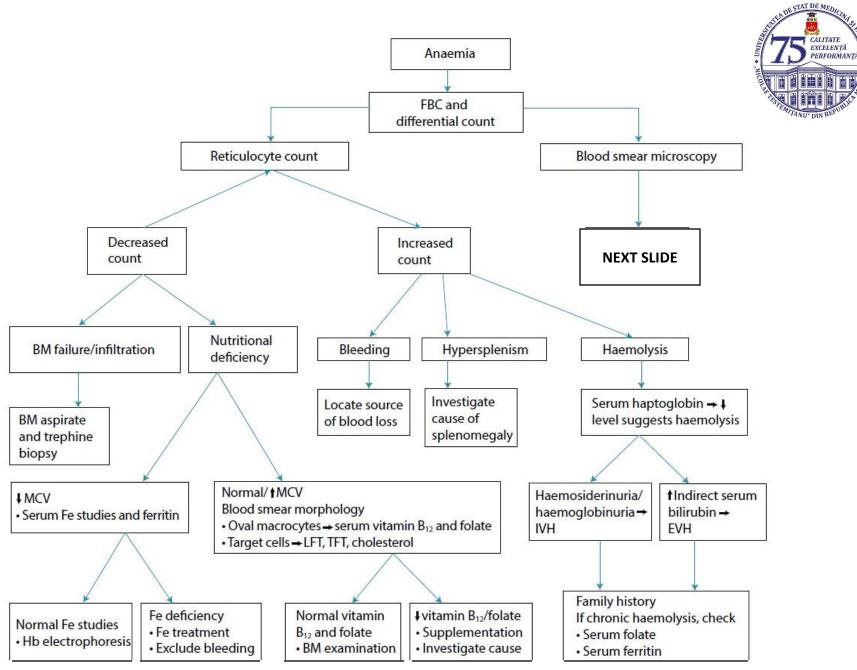
Classification

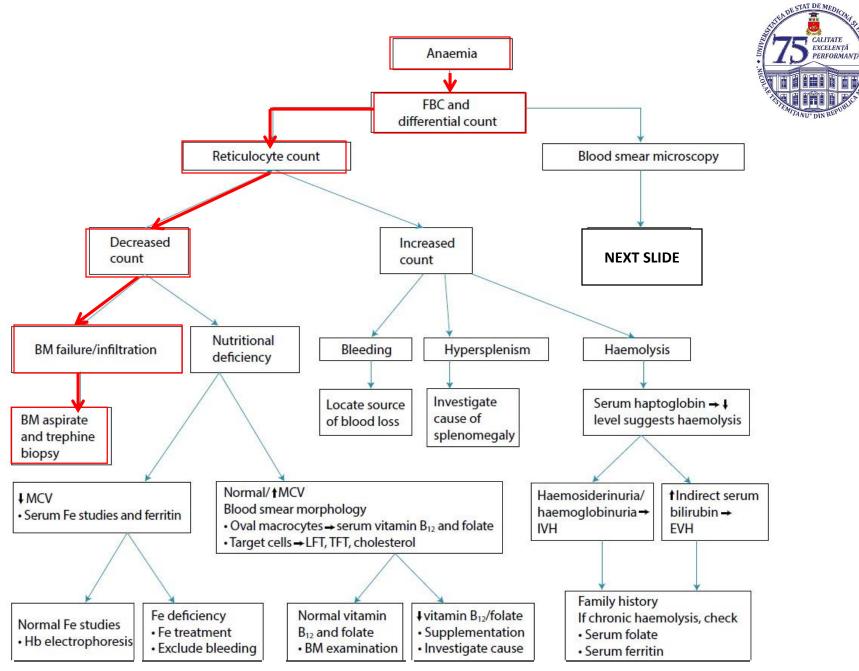
Based on RED CELL CHARACTERISTICS -

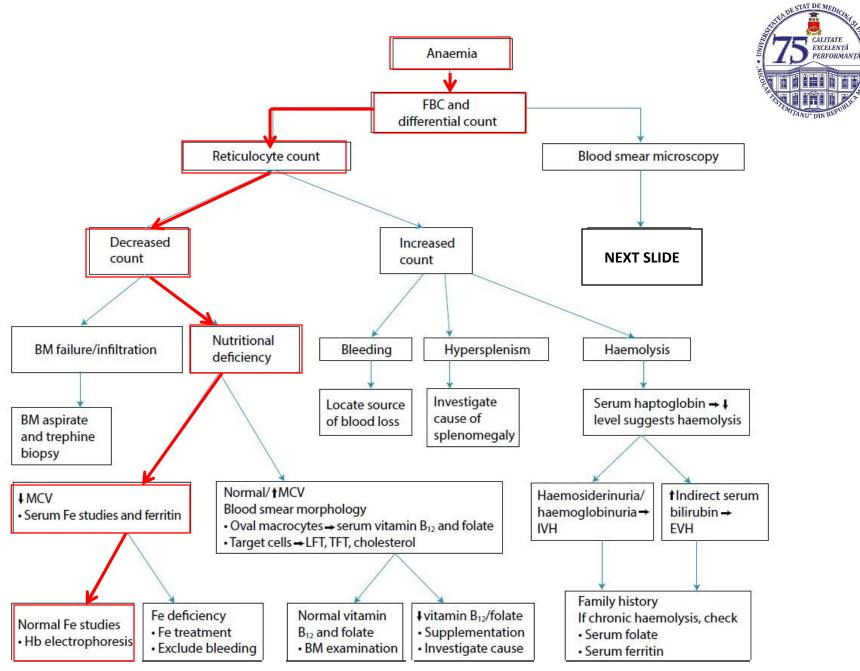
- red cell size, chromia and morphology:
 - \checkmark microcytic hypochromic
 - \checkmark macrocytic normochromic
 - \checkmark normocytic normochromic
- morphology:
 - ✓ leuco-erythroblastic
 - ✓ micro-/macroangiopathic

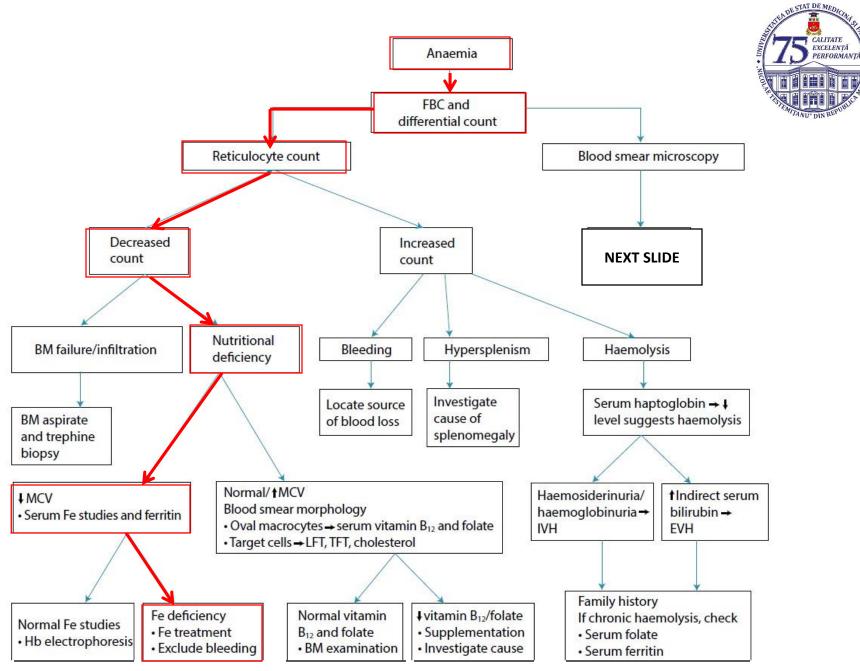
Classification (cont.)

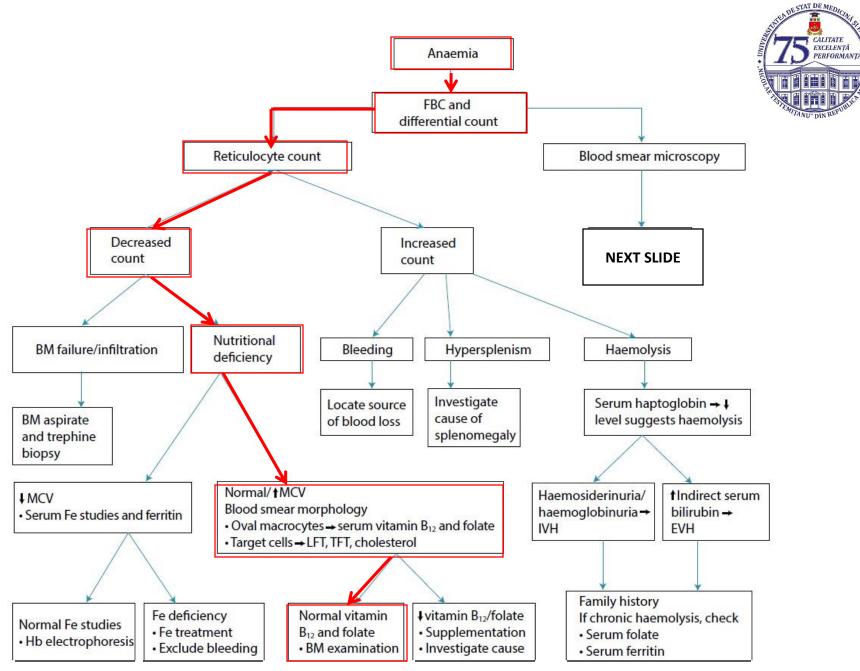
Based on UNDERLYING MECHANISM -

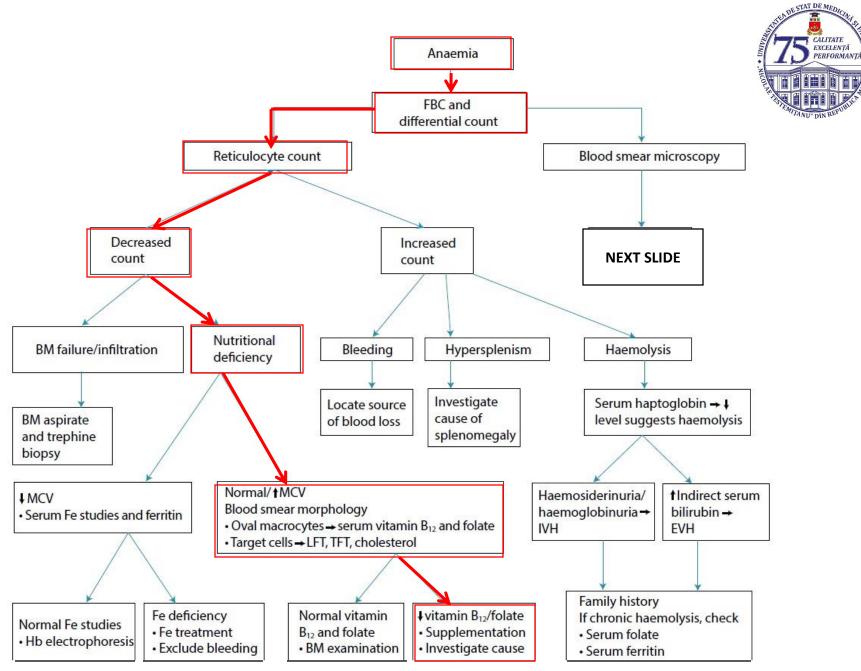

- decreased BM production/output:
 - ✓ BM aplasia/infiltrate
 - ✓ ineffective haematopoiesis (e.g. megaloblastic anaemia)
 - ✓ myelodysplastic syndromes, HIV
 - ✓ substrate deficiency
 - ✓ EPO insufficiency
- peripheral loss/destruction:
 - \checkmark bleeding
 - \checkmark sequestration
 - ✓ haemolysis

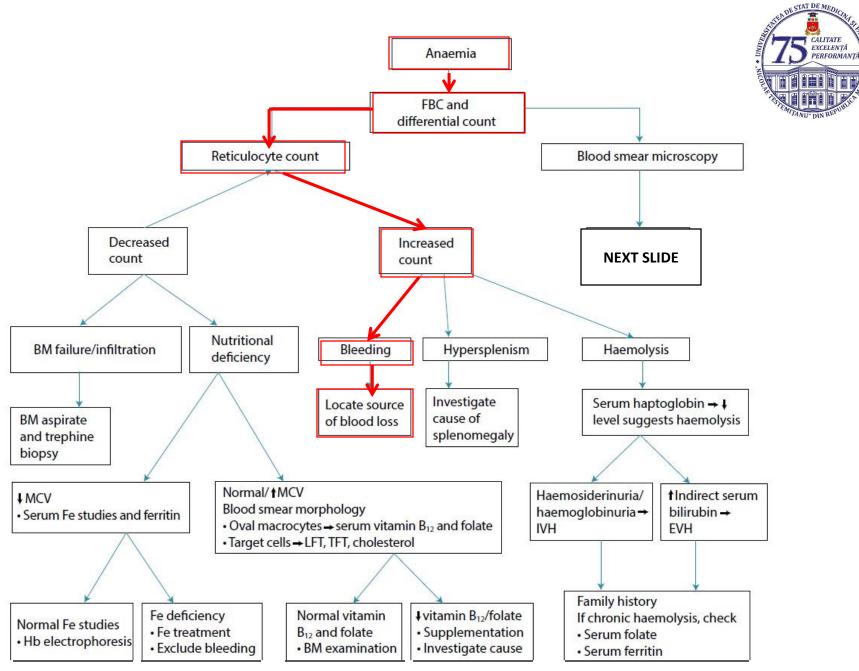

Risk Factors for Anemia

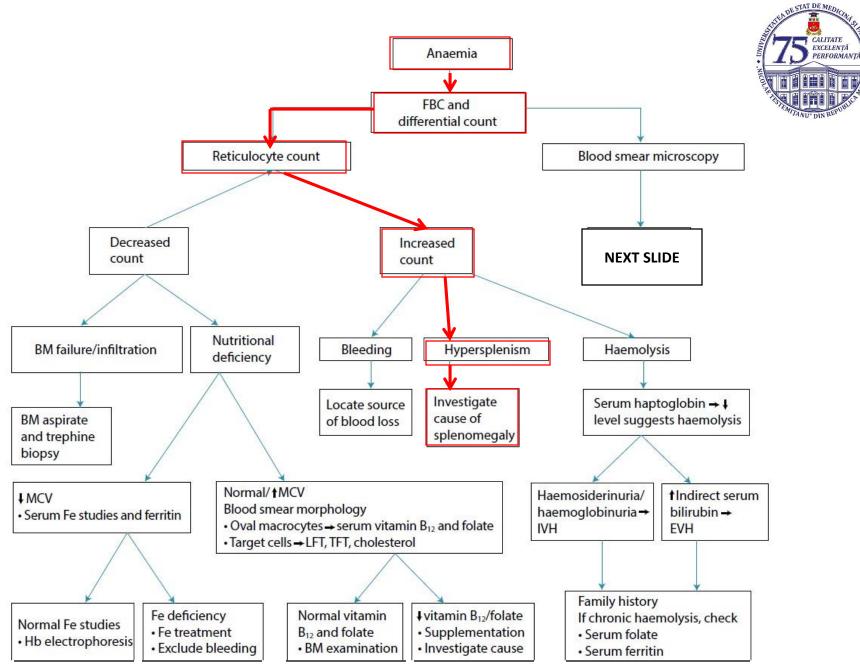


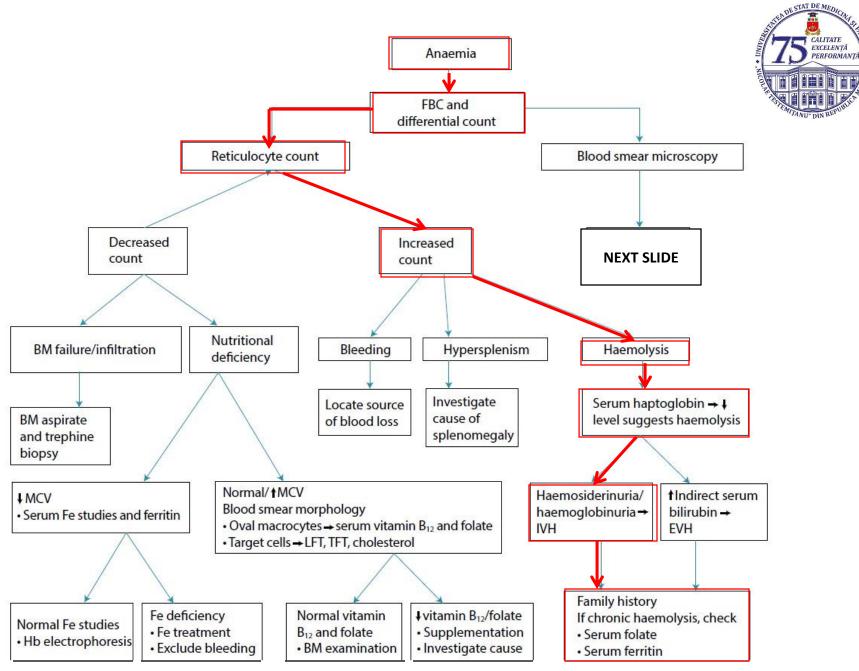

Etiology	Risk factor	Comment
Decreased RBC Chronic disease production		Renal disease can result in anemia because of decreased erythropoietin levels; hypothyroidism can result in macrocytic anemia because of impaired RBC production; chronic inflammation (as in chronic infection or rheumatologic disease) can lead to cytokine-mediated suppression of erythropoiesis; inflammatory bowel disease or celiac disease can result in anemia because of inflammation and nutrient malabsorption
	Iron deficiency ¹⁰	Pica induced by iron deficiency increases risk of lead ingestion, and lead is absorbed more readily in the presence of iron deficiency; iron levels should be tested in patients with lead poisoning
	Poor diet	Inadequate nutrient intake can cause deficiencies in iron, folate, and vitamins A, B ₁₂ , and D
	Prematurity	Decreased iron stores and increased demand for catch-up growth can cause iron deficiency; rarely occurs before birth weight is doubled
Increased RBC turnover	Drug use	Primaquine, sulfamethoxazole, and nitrofurantoin (Furadantin) can lead to hemolysis; this is more pronounced in patients with G6PD deficiency but can occur in any patient; phenytoin (Dilantin) can cause megaloblastic anemia
	Ethnicity	African ancestry in sickle cell disease; Mediterranean, Asian, or African ancestry in thalassemia; Sephardic Jewish, Filipino, Greek, Sardinian, or Kurdish ancestry in G6PD deficiency
	Family history	Thalassemia, spherocytosis, and sickle cell disease; family history may include gallstones and jaundice in addition to anemia
	Mechanical heart valves	Mechanical destruction by the valve can cause hemolysis
	Sex	G6PD deficiency and pyruvate kinase deficiency are X-linked and therefore more common in males
	Splenomegaly	Sequestration and increased destruction of RBCs can cause hemolysis
Both	Infection	Infection can precipitate immune-mediated hemolytic anemia or cause hemolytic crises in patients with inherited enzyme defects and sickle cell disease; can cause RBC aplasia (as in parvovirus B19 infection) or result in transient erythroblastopenia of childhood

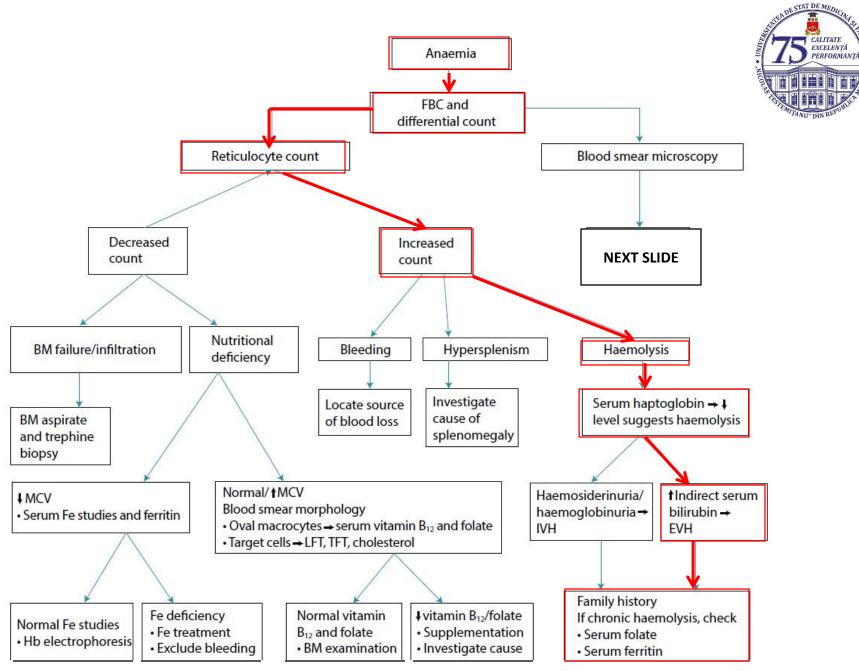

G6PD = glucose-6-phosphate dehydrogenase; RBC = red blood cell.

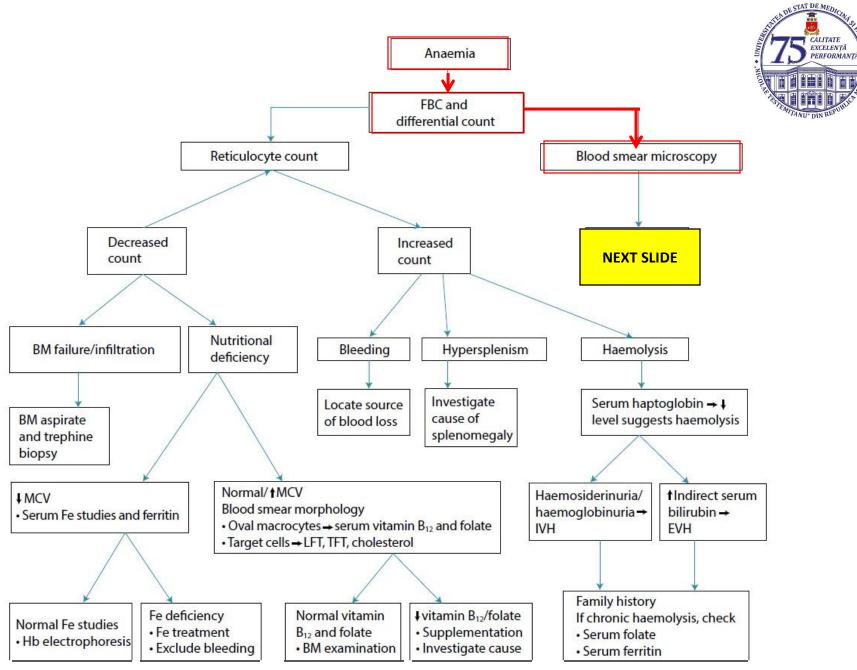












RED CELL MORPHOLOGICAL CHARACTERISTICS IN THE BLOOD SMEAR

		ANTANIT DIN REAL
Morphological observation	Significance	Further tests indicated and expected result
Oval macrocytes, teardrops, basophilic stippling, right shift	MA (megaloblastic anaemia)	Serum vitamin B_{12} and folate levels
Hypochromia	Iron deficiency anaemia (also see pencil cells)	Serum ferririn, transferrin and iron levels
Microcytosis	Chronic disorder; thalassaemia trait	Hb electrophoresis/HPLC
Sickle cells	Seen in sickle cell disease	Hb electrophoresis to confirm presence of Hb S, and quantitate Hb F level
Spherocytes	Noted in hereditary spherocytosis, warm AIHA	Coombs test: positive for IgG in warm AIHA Red cell membrane analysis: selected membrane protein abnormalities
Elliptocytes/ovalocytes	Hereditary elliptocytosis/ovalocytosis	Red cell membrane analysis: selected membrane protein abnormalities
Autoagglutination	Cold AIHA	Coombs test: positive for C3d in cold AIHA
Red cell fragmentation	If platelets decreased → microangiopathic haemolysis If platelets normal → macroangiopathic haemolysis	Microangiopathic haemolysis: DIC screen → consumptive coagulopathy U&E: marked renal dysfunction in HUS Altered neurological status: suspect TTP
Malaria	Life-threatening infection	Identify species Monitor FBC and parasite count while on treatment

AIHA = auto-immune haemolytic anaemia; U&E = urea and electrolytes; DIC = disseminated intravascular coagulation; HUS = haemolytic uraemic syndrome; HPLC = high-performance liquid chromatography; TTP = thrombotic thrombocytopenic purpura

Presenting complains

- increased tiredness/fatigue
- dyspnoea
- decreased effort tolerance

The severity of symptoms depends on the degree of anaemia and rate of Hb decrease. Therefore, at a given Hb level, anaemia from acute blood loss is likely to manifest more severely than anaemia of insidious onset (weeks to months).

Symptoms during early childhood should remind one of possible inherited forms of anaemia, e.g. thalassaemia.

TS CALIFATE EXCELENTA PERFORMANTA CALIFATE EXCELENTA PERFORMANTA CALIFATE EXCELENTA PERFORMANTA CALIFATE

History

- interrogation of the presenting complaint and duration of the problem
- transfusion history
- dietary history, including pica (craving for unusual food items, generally associated with iron deficiency)
- travel history (to endemic malarial or other infectious areas)
- change in bowel habits
- bleeding (e.g. gastrointestinal and genito-urinary)
- drug history (e.g. anticoagulants, antiplatelet agents, renotoxic agents, anticonvulsants)
- chronic disease (e.g. HIV, tuberculosis)
- surgery (e.g. gastrectomy, small-bowel surgery)
- family history

Clinical examination

• Skin and mucous membrane:

- ✓ pallor is the cardinal clinical sign for anaemia, which should be confirmed by measuring the Hb level
- ✓ angular stomatitis
- ✓ glossitis in nutritional deficiencies
- ✓ koilonychia (spoon-shaped nails) in iron deficiency
- premature greying, which often accompanies megaloblastic anaemia
- ✓ scleral ictus, which indicates possible haemolysis or ineffective erythropoiesis

Clinical examination (cont.)

• Neuromuscular:

- ✓ muscle weakness
- ✓ headache, lack of concentration, drowsiness, tinnitus
- ✓ paraesthesias, peripheral neuropathy, ataxia and loss of vibration sense, and proprioception in pernicious anaemia

• Cardiovascular:

- ✓ hyperdynamic circulation with haemic 'flow' murmurs
- ✓ cardiac failure

Clinical examination (cont.)

• Infection, malignancy:

(e.g. lymphoma, leukaemia, metastatic carcinoma)

- ✓ hepatosplenomegaly
- ✓ lymphadenopathy
- ✓ bleeding manifestations (petechiae, purpura, ecchymosis), bone marrow failure

Laboratory testing

- starting point of investigations complete blood count, differential count and reticulocyte count together with microscopic blood smear examination
- reticulocyte count gives an indication of the bone marrow status, i.e. decreased activity versus appropriate response to the anaemia
- reticulocyte production index (RPI) provides a more accurate representation of marrow activity than an isolated reticulocyte count, as it corrects for the degree of anaemia and presence of immature reticulocytes in the peripheral blood

Reticulocyte production index

The RPI is calculated as follows:

% reticulocytes × patient haematocrit/45 ÷

reticulocyte maturation time (days) in peripheral blood

The reticulocyte maturation time is calculated as follows:

- haematocrit >40% = 1 day
- 30 40% = 1.5 days
- 20 30% = 2 days
- <20% = 2.5 days

A decreased RPI signifies a suboptimal bone marrow response for correction of the anaemia

Differential diagnosis for **MICROCYTIC** anaemia includes:

- anaemia of chronic disorder
- thalassaemia trait
- sideroblastic anaemia

Pertinent Findings in Microcytic Hypochromic Anemia

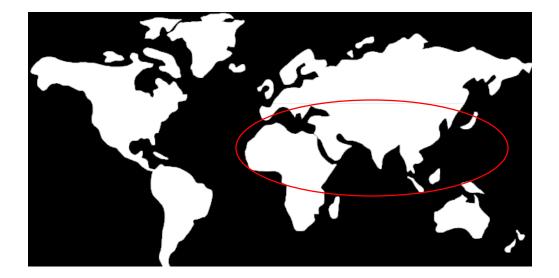
Cause of Anemia	Erythrocyte Count	Red Cell Distribution Width	Anisopoikilo- cytosis	Basophilic Stippling	Bone Marrow Iron
Iron deficiency	Decreased	Increased	Yes	No	Decreased
Thalassemia minor	Normal or increased	Normal	No	Yes	Increased
Sideroblastic anemias					
Hereditary	Decreased	Variable	Variable	Yes	Increased ringed sideroblasts
Acquired	Decreased	Dimorphic population	Yes	Yes	Increased ringed sidero- blasts
Chronic disease	Decreased	Variable	Variable	No	Decreased in siderocytes; increased in RE cells

RE = reticuloendothelial.

Anaemia of chronic disorder

- occurrs frequently in patients with chronic infection, malignancy or autoimmune disorders
- is caused by a combination of functional iron deficiency due to increased hepcidin, leading to iron sequestration (reticuloendothelial iron blockade) and EPO deficiency or resistance
- iron studies show raised ferritin and low TF levels with low or normal TF percentage saturation
- anaemia is usually normocytic and normochromic, but can be microcytic in approximately one-third of cases due to long-standing iron restriction at the macrophage level

ferritin is an acute-phase protein and may be falsely normal or raised in patients with iron deficiency in the presence of acute inflammation


Thalassemia

- Hemoglobin is a tetramer; with two alpha (α) and two beta (β)
- Due to abnormally low production of alpha or beta-globin chains: named for the chain which is decreased or absent
- + indicates diminished, but some production of globin chain still happens: e.g. β+
- **0** indicates complete absence of production production of globin chain by gene: e.g. β^0

Thalassemia

- Found most frequently in the Mediterranean, Africa, Western and Southeast Asia, India and Burma
- Distribution parallels that of *Plasmodium falciparum*

Distinguishing features between IDA and thalassemia

- Mentzer index: MCV/RBC <13 favors thalassemia
- England and Fraser Index: MCV (5 × Hemoglobin)
- The RBC count in thalassemia is more than 5.0x10⁶/μL (5.0x10¹²/L) and in IDA is less than 5.0x10⁶/μL (5.0x10¹²/L)
- MCV usually less than 70 in thalassemia trait, more than 70 in IDA
- The red cell distribution width (RDW) in IDA is more than 17% and in thalassemia trait is less than 17%

Results of Iron Studies in Hypochromic Anemias

Cause of Anemia	Serum Iron Level	Total Iron-Binding Capacity	Percent Saturation	Soluble Serum Transferrin Receptor Level	Bone Marrow Storage Iron
Iron deficiency	Decreased	Increased	Decreased	High	Decreased
Thalassemias	Increased or normal	Decreased or normal	Increased or normal	Variable, may be high	Increased or normal
Sideroblastic anemias	Increased	Decreased or normal	Increased	Variable, may be high	Increased
Chronic disease	Decreased	Decreased	Decreased	Normal	Increased

Differential diagnosis for MACROCYTIC anaemia includes:

- Non-megaloblastic
- Liver disease
- Myelodysplastic syndrome
- Increased reticulocyte count
 - ✓ Hemorrhage
- Megaloblastic
- Vitamin B12 deficiency
- Folic acid deficiency

Substrate deficiency anaemias

Iron deficiency anemia

- Common nutritional deficiency
- Iron facts
 - Body iron:
 - 80% functional (Hgb, myoglobin, cytochromes, etc.)
 - o 20% storage
 - Absorption: primarily in the duodenum
 - Transferrin: transports iron in blood
 - Ferritin: storage form of iron
 - Hemosiderin: derived from ferritin, long-term storage of iron

Dietary Iron

- There are 2 types of iron in the diet: haem iron and non-haem iron
- Haem iron is present in Hb containing animal food like meat, liver & spleen
- Non-haem iron is obtained from cereals, vegetables & beans
- Milk is a poor source of iron

Iron absorption

- Haem iron is not affected by ingestion of other food items
- It has constant absorption rate of 20-30% which is little affected by the iron balance of the subject
- The haem molecule is absorbed intact and the iron is released in the mucosal cells
- The absorption of **non-haem iron** varies greatly from 2% to 100% because it is strongly influenced by:
 - \checkmark the iron status of the body
 - \checkmark the solubility of iron salts
 - ✓ integrity of gut mucosa
 - $\checkmark\,$ presence of absorption inhibitors or facilitators

Inhibitors of iron absorption

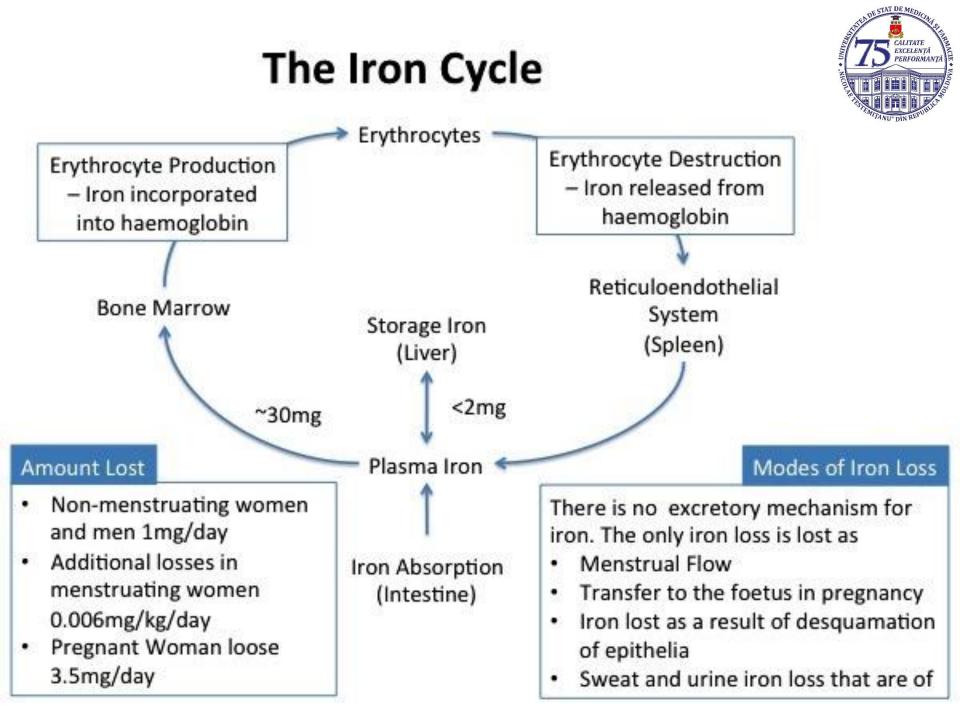
- Food with polyphenol compounds
 - Cereals like sorghum & oats
 - Vegetables such as spinach and spices
 - Beverages like tea, coffee, cocoa
 - A single cup of tea taken with meal reduces iron absorption by up to 11%
- Some fruits inhibit the absorption of iron although they are rich in ascorbic acid because of their high phenol content e.g strawberry, banana and melon
- Food fermentation aids iron absorption by reducing the phytate content of diet

Inhibitors of iron absorption

- Food containing phytic acid (i.e. bran; cereals like wheat, rice, maize & barely; legumes like soya beans, black beans & peas)
- Cow's milk due to its high calcium & casein contents
- The dietary phenols & phytic acids compounds bind with iron decreasing free iron in the gut & forming complexes that are not absorbed
- Cereal milling to remove bran reduces its phytic acid content by 50%

Promoters of Iron Absorption

- Foods containing ascorbic acid like citrus fruits, broccoli & other dark green vegetables because ascorbic acid reduces iron from ferric to ferrous forms, which increases its absorption
- Foods containing muscle protein enhance iron absorption due to the effect of cysteine containing peptides released from partially digested meat, which reduces ferric to ferrous salts and form soluble iron complexes


Iron transport

- **Transferrin** is the major protein responsible for transporting iron in the body
- **Transferrin receptors**, located in almost all cells of the body, can bind two molecules of transferrin
- Both transferrin concentration & transferrin receptors are important in assessing iron status

Storage of iron

- Tissues with higher requirement for iron (bone marrow, liver & placenta) contain more transferrin receptors
- Once in tissues, iron is stored as ferritin & hemosiderin compounds, which are present in the liver, reticuloendothelial cells & bone marrow
- The amount of iron in the storage compartment depends on iron balance (positive or negative)
- Ferritin level reflects amount of stored iron in the body & is important in assessing iron deficiency

Role of iron in the body

Iron have several vital functions:

- Carrier of oxygen from lung to tissues
- Transport of electrons within cells
- Co-factor of essential enzymatic reactions:
 - neurotransmission
 - synthesis of steroid hormones
 - synthesis of bile salts
 - detoxification processes in the liver

Daily Iron Requirements for Infants and Young Children

Age	Daily iron requirement	Source
Up to 4 to 6 months (full-term infants)	0.27 mg	Breast milk or iron-fortified formula
4 to 6 months to 1 year (full-term infants)	11 mg	Breast milk or formula plus iron- rich foods*
1 month to 1 year (premature or low– birth-weight infants)	2 to 4 mg per kg	Iron-fortified preterm formula or iron supplementation (2 mg per kg per day) plus breast milk and iron-rich foods
1 to 3 years	7 mg	Iron-rich foods

*—If a full-term breastfed infant cannot consume adequate iron after 6 months of age, supplementation is necessary (1 mg per kg per day).

Prevalence of Iron Deficiency Anaemia

Region	0-4yr	5-12yr	Women
South Asia	56%	50%	58%
Africa	56%	49%	44%
Latin Am	26%	26%	17%
Gulf Arabs	40%	36%	38%
Developed	12%	7%	11%
World	43%	37%	35%

Etiology of Iron Deficiency Anaemia

- Iron deficiency is the most common cause of anaemia, occurring in an estimated 15% of the world's population [Means RT, 2013]
- The causes of iron deficiency:
 - ✓ inadequate iron intake (e.g. nutritional deficiency, iron malabsorption)
 - excessive iron loss (mostly due to bleeding, menstrual blood losses)
 - increased iron demands (in young children because of the rapid growth)

Lab studies in iron deficiency anemia

- Microcytic, hypochromic anemia
- decreased MCV, MCH, & MCHC
- Iron studies
- low serum iron
- high total iron binding capacity (TIBC, transferrin concentration)
- low % transferrin saturation
- low ferritin
- decreased bone marrow storage iron (hemosiderin)

Treatment of Iron Deficiency Anaemia

- Oral iron supplementation is the mainstay of therapy for IDA
- Iron should ideally be given between meals together with vitamin C to maximise absorption, but it can be administered with food or at reduced doses in patients who experience excessive abdominal side-effects (e.g. abdominal discomfort, nausea or constipation).
- Treatment of IDA aims restoring the Hb to normal, followed by a further 4 6 months of therapy to replenish iron stores.

Treatment of Iron Deficiency Anaemia

- Response to oral iron includes:
 - 24-48 hr subjective improvement in CNS
 - 48-72 hr reticulocytosis
 - 4-30 days increase in Hb
 - 1-3 months repletion of iron stores
- Therapeutic dose: 3-6 mg/kg/day of elemental iron
 - induces an increase in Hb of 0.25-0.4 g/dl per day or 1%/day rise in hematocrit
- Failure of response after 2 weeks of oral iron requires reevaluation for ongoing blood losses, infection, poor compliance or other causes of microcytic anaemia

Treatment of Iron Deficiency Anaemia

- Intravenous iron is necessary when more rapid correction of the Hb level is desired, if iron malabsoprtion is the main cause for the IDA, or if oral iron is not tolerated.
- Blood transfusion is indicated for severe, symptomatic anaemia, especially in patients who are bleeding.

DMT-1 mutations

- DMT1 is a transmembrane protein encoded by the SLC11A2 gene located on chromosome 12.
- The disease is autosomal recessive and the anaemia is present from birth.
- It is involved in iron absorption by the enterocytes in the duodenum and in iron transport from the microsomes to the cytoplasm in the erythroblasts.

DMT-1 mutations

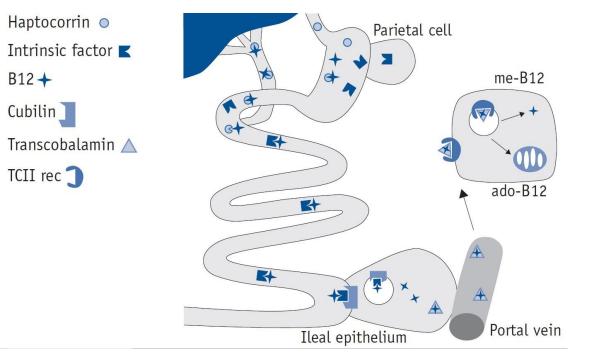
- In case of a mutation affecting the function of DMT-1 iron absorption in the duodenum continues because the absorption of haem iron is not disturbed. (In fact, in meat-eating humans it is estimated that about 2/3 of absorbed iron comes from haem.)
- Thus in humans, a mutation in DMT1 protein will primarily affect iron utilisation and not absorption, leading to a severe microcytic iron deficiency anaemia with increased iron stores.
- To date mutations in the gene encoding DMT1 has been described only in several families.

Mutations in matriptase-2 gene

- Matriptase-2 is an essential regulator of iron homeostasis.
- In mice as well as in humans, mutations in the TMPRSS6 -/- gene lead to severe iron deficiency anaemia.
- This state is characterised by reduced ferroportin expression (shown in the mouse model) and both animals and humans have high hepcidin levels.
- Recent studies have demonstrated that TMPRSS6 (Matriptase-2) is a transmembrane protease suppressor of hepcidin gene expression. *In vitro* studies showed that it acts via hepatic haemojuvelin.

Mutations in matriptase-2 gene

- Mutation in matriptase leads to the IRIDA disease (Iron-Refractory, Iron-Deficiency Anaemia).
- Nine patients have so far been described. All of them presented from birth with a moderate to severe anaemia with severe microcytosis (MCV from 49 to 65 fl), with typical iron deficiency state (low serum iron and serum transferrin saturation, high serum transferrin receptor).
- Oral iron administration is ineffective and response to parenteral iron administration is partial.



Anemia Due to Folate or Vitamin B12 (Cobalamin) Deficiency

- Between 1847 and 1880, Adisson, Biermer and Ehrlich described a severe form of anaemia associated with megaloblastic features and neurological disturbance. Slowly progressive and invariably causing death, it was called pernicious anaemia.
- In 1927 the first effective treatment was administered to patients thanks to the work of Whipple, Minot and Murphy consecrated by a Nobel prize in 1934. A diet containing large quantities of liver allowed correction of anaemia and of neurological signs.
- In the same period, Castle identified a factor produced in the stomach (intrinsic factor) that was found to improve Hb values of patients with pernicious anaemia.
- Intrinsic factor is a 45 kD protein produced by gastric parietal cells with a low affinity for cobalamin. The synthesis of vitamin B12 (cyanocobalamin, 1948) allowed a simple treatment of this otherwise lethal condition.

- Vitamin B12 is released from food, by gastric acid and pepsin and initially is fixed by haptocorrin present in saliva.
- In the duodenum the alkaline environment and proteases release haptocorrin, allowing fixation to intrinsic factor.
- A specific ileal receptor, cubilin, allows specific absorption and transfer of B12 to transcobalamin in the blood circulation.
- Final utilisation by cells is driven by the transcobalamin receptor.

In order to be adequately absorbed, all the following conditions must be achieved:

- sufficient dietary intake,
- release of B12 by acid and pepsin,
- sufficient pancreatic enzyme to free B12 from haptocorrin,
- secretion of normal amounts of intrinsic factor and
- a normal ileal mucosa to bind B12-IF complex.

Once absorbed into body cells, vitamin B12 is used in two important biochemical pathways:

methylcobalamin (in conjunction with folic acid) is required for the synthesis of methionine, which in turn allows methylation of DNA and proteins, while adenosylcobalamin is required for the synthesis of succinyl CoA and synthesis of fatty acids.

Anemia Due to Folate or Vitamin B12 (Cobalamin) Deficiency

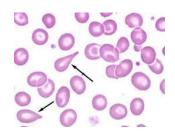
- Folate and cobalamin required for DNA synthesis
- Deficiency results in <u>megaloblastic anaemia</u> due to impaired DNA replication
- Impaired nuclear development but abundant cytoplasm (nuclear-cytoplasmic asynchrony)
- Large marrow progenitors
- Similar clinical features* in peripheral blood and marrow morphology in folate and cobalamin deficiency

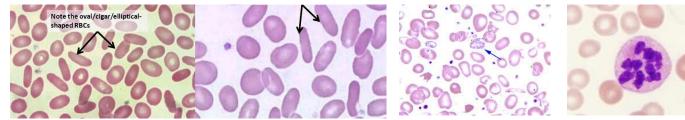
*Exception: Neurologic abnormalities in B12 deficiency

Causes of vitamin B12 and folate deficiencie

Vitamin B ₁₂ deficiency	Folate deficiency		
Dietary deficiency	Dietary deficiency		
Ovolactovegetarians	Poor diet (e.g. alcoholics, elderly)		
Malabsorption	Malabsorption		
Pernicious anaemia	Inflammatory bowel disease		
Ileal pathology	Coeliac disease		
Crohn's disease/ulcerative colitis	Short-bowel syndrome		
Infection, e.g. HIV, TB	Impaired folate metabolism*		
Infiltration, e.g. lymphoma surgery	Drugs (e.g. methotrexate, anticonvulsants, antimalarials)		
Gastrectomy, ileal resection	Alcoholism		
Diphyllobothrium latum (fish tapeworm)	Hypothyroidism		
Blind loop syndrome	Excessive folate demand		
Drugs (e.g. proton pump inhibitors, metformin)	Chronic haemolytic anaemia		
	Pregnancy and lactation (particularly if the diet is poor)		
*Serum folate levels may be normal.			

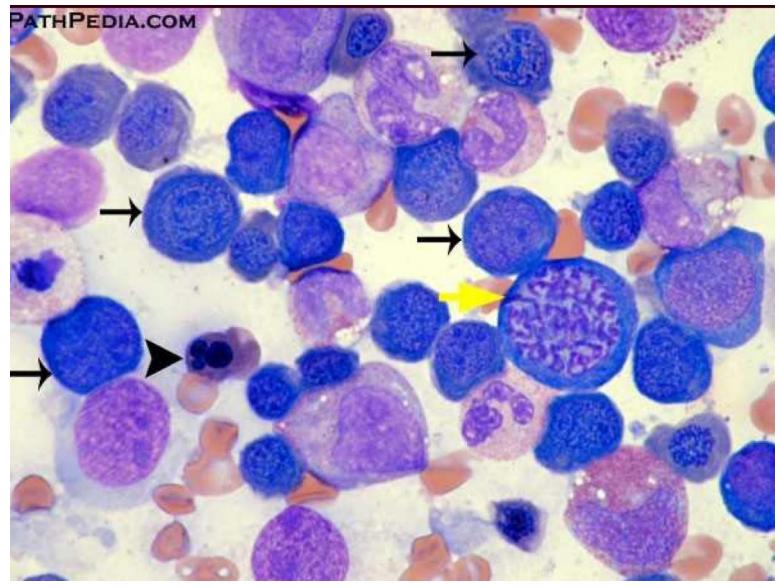
Folate and Cobalamin Deficiency


Clinical and Laboratory Findings


- Non-specific signs and symptoms of anemia
- Macrocytic anemia
- Relatively low reticulocyte count
- Hypersegmentation of neutrophils
- Mild thrombocytopenia and/or neutropenia
- Megaloblastic changes in marrow
- Neurological findings (B12 deficiency only): loss of position sense, ataxia, psychomotor retardation, seizures

Diagnosis of Megaloblastic Anaemia

- Low serum levels of vitamin B12 or folate
- Intrinsic-factor antibodies are positive in 50 70% of cases
- Characteristic peripheral blood smear morphology
 - ✓ teardrops
 - ✓ macro-ovalocytosis
 - ✓ varying numbers of red cell fragments
 - ✓ basophilic stippling
 - ✓ hypersegmentation (right shift) of neutrophils



teardrops cells

macro-ovalocytosis

basophilic stippling hypersegmentation of neutrophils

Small black arrows (erythroid hyperplasia), Yellow arrow (megaloblastic chage) and Arrohead shows the dysplasia

Therapeutic protocols for nutritional anaemia

Micronutrient deficiency	Suggested therapeutic protocol
Iron	Ferrous sulphate 200 mg orally
	3 times daily between meals
	together with vitamin C for
	4 - 6 months
Folate	5 mg orally daily for 2 -
	4 months (or while the
	underlying risk factor persists)
Vitamin B ₁₂	1 000 μg daily intramuscularly
	for 5 - 7 days, followed by
	1 000 μg intramuscularly
	weekly for a month, and then
	1 000 μg intramuscularly every
	2 months for life

Recommendations for Screening for Anaemia

Recommendations

- Screening is recommended at 9 to 12 months of age and again 6 months later for all infants in populations with high rates of iron deficiency, or (in populations with a rate of 5 percent or less) in infants with medical risks or whose diet puts them at risk of iron deficiency
- Screening is recommended for children from low-income or newly immigrated families between 9 and 12 months of age, then 6 months later, then annually from 2 to 5 years of age
- Screening should be considered for preterm and low-birthweight infants before 6 months of age if they are not fed iron-fortified formula
- Infants and young children with risk factors should be assessed at 9 to 12 months of age, and again 6 months later
- Beginning in adolescence, all nonpregnant women should be screened every 5 to 10 years
- No recommendation for or against screening for iron deficiency anemia in asymptomatic children 6 to 12 months of age
- Screening at 9 to 12 months of age is recommended for high-risk infants

High-risk groups

- Premature infants Low-birth-weight infants Infants fed low-iron formula Breastfed infants older than 6 months who are not receiving iron supplementation Infants fed non-iron-fortified formula or cow's milk before 12 months of age Breastfed infants older than 6 months without adequate iron supplementation Children who consume more than 24 oz of cow's milk per day Children with special health care needs (e.g., medications that interfere with iron absorption, chronic infection, inflammatory disorders, blood loss) Premature infants Low-birth-weight infants **Recent immigrants** Adolescent girls who follow fad diets or who are obese
- Adult females

An apple a day keep the doctor away!

